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Microwave propagation over the Earth: image inversion
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Abstract. An extremely accurate but simple asymptotic description for the path of a light ray propagating over a
curved Earth with steady radial variations in refractive index is derived using simple scaling arguments. It is used
to determine effectively exact analytic solutions for the path of rays through refractive-index profiles described in
terms of patched quadratics. Such patched quadratics can be used to accurately describe almost all refractive-
index profiles of practical interest. The results show that images generated by rays passing through a quadratic
refractive-index profile are uniformly magnified in the vertical direction, and magnification and displacement obser-
vations can be used to determine the refractive-index profile parameters. For patched quadratics, observations of
critical rays can be used to determine the thicknesses of the quadratic layers.

An effectively exact solution is also obtained for exponential index profiles and this is used to determine the
path of rays through a thin boundary layer attached to the Earth; an inferior mirage situation.
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1. Introduction

A ship is seen on the horizon; where is it exactly and what is its shape? It is not a silly ques-
tion. Its size and location is not as seen by the eye and interpreted by the brain; for example
the location can be misjudged by 10–20 m. The point is that what is seen is determined by the
ray paths from the ship to the eye, and light rays do not travel in straight lines. Other more
spectacular consequences of the bending of light rays are mirages, and looming. Although
not explicitly expressed in the question, the real challenge is to determine the refractive-index
profile; we are really dealing with an inverse problem, and this particular inverse problem is
known to be very difficult to solve numerically.

Many of the above observations have been qualitatively understood for hundreds of years
and quantification came with Willebrord Snell’s celebrated law back in 1621. In more recent
times geometric optics and variational principles have been used to obtain an implicit path
description of a ray propagating through a variable-refractive-index medium; Courant and
Hilbert devote a whole chapter to the eikonal equation describing propagating rays. Still more
recently multi-scaling ideas have been used to determine accurate asymptotic-solution descrip-
tions close to caustics and to separate out diffraction effects. In spite of all the above, the
practical determination of the above ship’s location to the accuracy desired remains elusive,
primarily because the ray paths have not been determined sufficiently accurately but also
because the pattern of rays that arise for even simple refractive-index profiles is intricate, thus
making the task of inverting an image difficult; see for example Figure 4. An explicit asymp-
totic-solution determination of the ray path for quadratic index profiles on a spherical Earth
recently obtained by Nener et al. [1] greatly simplifies the problem. We will briefly describe



254 N. Fowkes and B. Nener

this work and then go on to discuss its use for image inversion for general (radially varying)
refractive-index profiles.

Refractive-index variations arise because the speed of ray propagation is (weakly) depen-
dent on the temperature, pressure and humidity of the atmosphere through which the ray is
propagating1; see [2] for the optical case. Significant changes in such climatic conditions occur
especially close (and parallel) to the Earth’s surface, with temperature variations being dom-
inant in the optical ray propagation context. In the atmospheric-boundary-layer context of
interest here the refractive index model

n=1+υn′, with n′ =γ P
T
, where υ=10−6 and γ ≈78,

is accurate; see [3, p. 354]; here P is the pressure in mbars and T is the absolute temperature
in Kelvin. The refractive-index variations are relatively small (of order υ), so that the devia-
tion of a ray from a straight-line path is small; however, such small deviations are sufficient to
lead to deflections of the order of meters over the propagation distances (20–30 km) of inter-
est, and give rise to optical distortions and in some situations, inversions and mirages. Also
over the distances of interest the curvature of the Earth cannot be ignored; indeed, a deter-
mination of the viewing horizon is often high on the list of priorities. Temporal variations in
refractive index due to turbulence result in variations in the image position (shimmering or
dancing) and intensity (twinkling or scintillation). Such temporal issues will not be addressed,
but asymptotic techniques along the lines described here are likely to lead to practically useful
descriptions for such phenomena.

1.1. Previous work

Snell’s Law (when modified for spherical geometry) says

Rn(R) cosγ (R)= c (1)

along a ray, where R is the radial distance within the atmosphere from the Earth’s centre,
n(R) is the refractive index, γ (R) is the angle of the ray with respect to the local horizontal,
and c is a constant for the ray. This equation determines the deviation of the propagating
ray locally, so that in theory the complete path can be determined by patching together local
solutions numerically (see Lehn [4]) or by integrating Snell’s Law. An exact solution is, how-
ever, unavailable except in the constant-refractive-index case. The practical difficulty is that
very accurate evaluations are required in order to quantitatively interpret visual observations.
Earth-curvature effects introduce a further source of numerical inaccuracy. In short, numeri-
cal ray tracing and integration calculations run into accuracy problems of both a truncation
and round-off type. Even if such calculations are performed to the required accuracy, they
are unlikely to lead to a practical understanding of the effect of atmospheric variations on
the quality of the image. Such difficulties are compounded when one attempts to solve the
inverse problem using forward solutions to home-in on the required refractive-index profile.

Early investigations of atmospheric propagation were made by Nölke [5] in 1917 using a
flat-Earth model, valid for short ranges. Kerr [6, Section 1.5, pp. 15–22] used the concept of
Modified Index of Refraction N (originally due to Schelling et al. in 1933 [7]) to take into
account the Earth-curvature effect, reducing the problem again to rectangular coordinates but
with an extended range of applicability. Since that time a number of approaches to the solu-
tion of the forward problem have been taken; see [4, 8–18]. Of particular note is the exten-
sion by Kropla and Lehn [19] of the parabolic-ray-curvature approach of Lehn [4], applicable

1And also the wavelength of the propagating ray.
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to spherical layers containing constant refractive-index gradients. These approaches have the
difficulty that the approximations are local and require accurate numerical patching to realize
an acceptable output for general profiles. Recently the authors have obtained accurate explicit
asymptotic solutions for the complete ray path for quadratic refractive index profiles; see [1].
The extension to quadratic refractive-index profiles is important because the received images
in this case are uniformly magnified, thus greatly facilitating the construction of and inver-
sion of an image; quadratics are optimal.2 These results will be described here briefly before
proceeding on to the main body of this work.

In Section 2 we describe the scaling and approximation ideas that lead to a simpli-
fied description of the path of rays propagating through a radially varying refractive-index
medium over the Earth, and use the results to determine an explicit path description for rays
propagating through a medium described by quadratics and then patched quadratics. In Sec-
tion 3 we show how these results can be used to invert an image generated by such rays.

Rapid refractive-index changes sometimes occur within boundary layers a few meters thick
close to the surface of the Earth, and mirages can result. In Section 4 we use asymptotic-
matching principles to examine such situations.

2. Ray paths in radial refractive-index cases

Optics is, of course, one of the classic topics of physics and perhaps the earliest, and argu-
ably the most significant, application area for asymptotic techniques. The wave length of light
is of the order of 10−7 m; very much smaller than propagation distances of normal interest.
Short-wave asymptotic (WKBJ) approximations utilize this large difference in scales to obtain
an extremely accurate,3 and very much simplified, description of the wave field. Except very
close to caustics and other regions of focusing and shadow boundaries, a ray-path (or Geo-
metric Optics) description suffices with the rays coinciding with the characteristics of the eik-
onal equation

(∇ψ)2 =n2(r). (2)

In the particular case of interest here, in which the refractive index varies only with distance R
from the centre of the Earth, the characteristic equations can be integrated to give an implicit
description for the ray path R(θ), where θ is the angular displacement away from the launch
position; see Figure 1. If the ray is projected from (R, θ)= (R0,0) at a launch angle whose
tangent is γ0 (see Figure 1) then

∫ R

R0

q0 dR′

R′2
√
(n2(R′)−q2

0/R
′2)

=±θ, with q0 =R0(1+υn′) cosγ0, (3)

where the sign needs to be chosen so that at θ=0, the angular displacement of the ray γ =γ0.
This well-known result can also be obtained by directly integrating Snell’s Law (1).

An explicit evaluation of the integral in (3) is not possible, except in the constant
refractive-index (n=1) case, which yields the expected straight-line solution R1(θ) given by

q0/R
1 = cos(γ0 ± θ). (4)

Whilst exact, the above ray-path description (3) is not suitable for evaluation because of the
large and small variables and parameters sprinkled throughout the expression.

2Higher-order profiles give rise to distorted images.
3Relative error of order 10−7.
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Figure 1. Ray propagation around the Earth: Left: Unscaled geometry. The ray R(θ) is launched from (R, θ) =
(R0,0) at a height H above the Earth to a target at distance L around the Earth. The tangent of the initial launch
angle is γ0. R1(θ) is the straight-line ray path in the constant refractivity case. Right: The ray path in the scaled
domain.

2.1. Scaling

Typically we are interested in waves propagating over distances L≈ 10 km, at heights H =
R0 −ae≈10 m, over the Earth, a sphere of radius ae≈6×103 km, within an atmosphere with
refractive-index variations of the order 10−6. With this in mind, we introduce scaled coordi-
nates (x′, z′), with x′ measuring distance from the source location measured around the sur-
face of the Earth and scaled so that x′ = 1 is the location of the target, and z′ the height
above the surface, scaled so that (0,1) is the location of the source; see Figure 1. To do this
we write

R=ae(1+ (hl)z′), θ = lx′, γ0 =hγ ′
0, n=1+υn′(z′), (5)

where υ=10−6, and where l= L

ae
and h= H

L
(6)

are both of order 10−3. We also scale the refractive index variations to reflect the expected
range by writing the refractive index in terms of the refractivity n′;

n=1+υn′, with υ=10−6. (7)

After changing to scaled variables and expanding out in terms of the small parameters
(h, l, υ), the ray-path equation (3) reduces to

x′ =
∫ z′

1

1
γ ′(n′(u′))

du′ +O(υ,hl), where (8)

γ ′ =±
√

[2η(n′(z′)−n′(1))+2κ(z′ −1)+ (γ ′
0)

2] (9)

can be interpreted as the tangent of the angle the ray path makes with the horizontal at any
location (x′, z′); see Figure 1. Here

η= υL2

H 2
, κ= L2

aeH
, (10)
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are the dimensionless groups of the problem: η is a refractivity variation parameter and κ a
curvature parameter; κ=0 corresponds to a flat-Earth approximation.

Note that a prescribed ray, identified by its initial projection angle γ ′
0, cannot propagate

into a region in which the argument of the square root defining γ ′ is negative; in fact, the
ray will reach a turning point on the boundary z′ = z′t of this region, so that

γ ′(z′t , γ
′
0)=0 (11)

determines the height z′t at which such turning points can occur; a useful result not requiring
a complete path determination. The determination of the corresponding horizontal location
x′
t does, however, require a path description.

The above result for the ray path may appear to be a purely superficial re-arrangement of
the earlier description; however, from a numerical point of view the improvement is substan-
tial. Both parameters η and κ in the above integral are of unit order and the integral is to
be evaluated over a distance of unit order, so that an accurate numerical evaluation is possi-
ble using standard packages. If in addition the order υ,hl terms are neglected (with relative
error of order 10−6) the integral in the path description can be evaluated exactly for linear
and quadratic refractive index profiles.

For future purposes it should also be noted that the path description depends on the
refractive index difference n′(z)−n′(1), so that a uniform shift in the refractive-index profile
will not affect ray-paths. One implication is that such shifts cannot be detected by a simple
ray path observation so that the inverse problem is ill-posed; an independent measurement of
the datum n′(1) is necessary for a complete profile determination.

For convenience we will now drop all primes on scaled quantities.

2.2. Analytic solutions for quadratic index profiles

A great advantage of the approximate ray-path description (8) is that exact solutions are avail-
able for simple index profiles of practical importance, and the result for quadratic index pro-
files is especially significant. Explicitly, if the profile (after scaling) is given by

n(z)−n(1)=a2(z−1)2 +a1(z−1), (12)

then the integral in (8) can be evaluated and the result obtained inverted to give the explicit
path description

z(x, γ0)−1=
[

sin(
√−2ηa2x)√−2ηa2

]
γ0 + ζ(cos

√
−2ηa2x−1), if a2<0, (13)

and

z(x, γ0)−1=
[

sinh(
√

2ηa2x)√
2ηa2

]
γ0 + ζ(cosh

√
2ηa2x−1), if a2>0, (14)

where

ζ = ηa1 +κ
2ηa2

. (15)

In the linear limit, a2 =0, the familiar parabolic profile

z−1= 1
2

[(κ+ηa1)x
2 +2γ0x],

or



258 N. Fowkes and B. Nener

x(γ0)= 1
ηa1 +κ

(√
γ 2

0 +2(ηa1 +κ)(z−1)−γ0

)
, (16)

is recovered.
Note that the path description does not contain the constant n(1); as indicated earlier a

uniform shift in refractive index profile does not effect the ray path. The two cases a2>0 and
a2<0 are very different; see Figures 2 and 3.

2.2.1. The concave profile case (a2>0)
In this case the refractive index increases away from an effective minimum located at z=
1 − a1/(2a2); see (12). Rays which deflect towards higher-index regions spread out and away
from this location; see Figure 2.

2.2.2. The convex profile case (a2<0)
In this case the refractive index decreases away from an effective maximum located at z=
1 − a1/(2a2); rays bend back towards this location, leading to oscillatory behaviour with

Figure 2. Quadratic Index Profile Rays: Concave profile (a2 > 0) case. Left: The index profile (a1 = 1·0, a2 = 2·0).
Right: Rays are launched from height z=1·0 with a range of initial angles γ0 =−2 . . .2. (κ=1, η=1).

Figure 3. Quadratic Index Profile Rays: Convex profile (a2 < 0) case. Left: The index profile (a1 = 0·0, a2 = −16·0).
Right: Rays are launched from the height z=1·0 with a range of initial angles γ0 =−1 . . .1 (κ=1, η=1).
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period
√−2ηa2/2π ; see Figure 3. In this case rays intersect; in fact, all rays intersect at com-

mon intersection points. Note that, if an observer and object are located on opposite sides
of an intersection point, then the observer will see an inverted image of the object; mirages
are possible. Also note that, because the rays are ducted, they can propagate well beyond the
normal horizon on a spherical Earth. Also, such trapped rays cannot escape the duct, so that
regions of the object plane are obscured from an observer. An object located at an intersec-
tion point, for example, would be essentially invisible to an observer.

The behaviour described above was in general terms recognized going back at least to
Snell, and it has recently been quantified and the results verified experimentally. However,
because accurate analytic solutions for complete ray paths have not been available until the
above work, numerical evaluations were needed for even linear profiles; see [4]. The trunca-
tion and numerical errors introduced made the inverse problem difficult. Given the long his-
tory, it is really surprising that the simple exact result described above had not been obtained
much earlier. Aside: It should be pointed out that scattering and absorption effects ignored
in the present work will reduce the amplitude of the propagating ray and thus the extent of
ducting. Also temporal and 3D effects will affect the extent of focusing. Of course, the above
theoretical results provide required information for assessing such effects.

Of particular interest to us for later work is the parametric dependence of the image height
at the target end, x=1, as a function of the launch angle γ0 and the profile parameters. The
Equations (13–15) give

z(1, γ0)−1=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζ(cos
√−2ηa2 −1)+

[
sin(

√
−2ηa2)√

−2ηa2

]
γ0 for a2<0

ζ(cosh
√

2ηa2 −1)+
[

sinh(
√

2ηa2)√
2ηa2

]
γ0 for a2>0

, (17)

with

ζ = ηa1 +κ
2ηa2

.

2.3. General profiles: patched quadratics

Exact ray-path solutions can be obtained for up to quartic refractive-index profiles using (8),
but for practical purposes such profile representations and results are not likely to be of use.
A much to be preferred procedure is to break up the refractive-index domain into a small
number of sensible horizontal layers and to describe the profile in each of the layers using
quadratics. In fact, patched quadratics represent the natural or optimal setting for the prob-
lem because:
– By using the above results exact ray-path solutions can be obtained for any patched qua-

dratic profile4

– Patched quadratics are likely to be adequate to represent almost any index profile of prac-
tical interest.

– The image generated by rays passing through a single quadratic layer is undistorted; higher-
order profiles produce distorted images. This result, which will be established in the next
section, greatly facilitates both the generation of ray paths and image inversion.
For practical purposes no more than three or four layers should be necessary to represent

the index profile; we will number these layers from the Earth up. Explicitly we use

n(i)(z)=a(i)2 (z−1)2 +a(i)1 (z−1)+ c(i), for z1>z>zi−1, i=1,2, · · · (18)

4The procedure becomes impractical for large numbers of layers.
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Figure 4. Propagation through three quadratic index layers: Left: The refractive index profile. Right: Rays projected
into the domain.

Normally the quadratic representations should be chosen so that the profile is continuous
across the layers; the constants c(i) can be chosen to achieve this end.5 With this choice the
ray path through any finite number of quadratic zones can be exactly determined by simply
matching the location and slope of rays described by (13, 14) across the quadratic zones, and
thus complete images can be generated for any patched quadratic profile. A simple program
that does just this has been written and the results are displayed in Figure 4 for a case involv-
ing three layers. The computation is effectively instantaneous on a desktop computer, as one
would expect.6 In the case shown, rays with a variety of launch angles are projected into layer
2, a convex index-profile layer. For moderate launch angles the rays are trapped within the
layer. For sufficiently large launch angles rays escape from layer 2 into layer 3, never to return.
For sufficiently small launch angles rays penetrate into layer 1 and are then deflected back
into layer 2 and finally into layer 3. It is interesting to note that the pattern of rays gener-
ated by such a simple index profile is quite complex.

3. Image reconstruction

The aim of the present work is to unscramble the image of an object generated by rays prop-
agating through a radially varying refractive-index profile. The task could be considered to
be complete if one could use the results so far obtained to determine the image of the same
object that would be generated under uniform refractive-index conditions. In order to con-
struct this true image, we need to determine the refractive-index profile. We have already seen
that a uniform shift in this profile7 cannot be detected; however, such a shift does not affect
the image, and so there is no need to make such a determination in context. The aim is
thus to determine the refractive-index-profile parameters (a(i)1 , a

(i)

2 ), i=1,2, . . . , and the layer
thicknesses, in terms of observable image characteristics. We will commence by considering
the single-layer case.

The observation instrument used to view an object normally consists of a lens or mir-
ror system to produce a real image, and an array of photodetectors (perhaps the retina or
a photographic plate) in the image plane to detect the image. For purposes of exposition the
object being viewed is a lighthouse with equally spaced markings up its side and located at a

5Recall that a shift in the refractive-index profile does not effect ray paths.
6Schemes based on local path descriptions are of course computationally intensive.
7That is a change in n(1).
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Figure 5. The ideal observation system. An image is formed on the focal plane of the lens.

Figure 6. The ideal ray path (constant refractive index) and the actual ray path for a radially varying refractive-
index profile.

distance sufficiently far away from the observation system that the image occurs in the focal
plane of the optical system; see Figure 5. Our interest is in atmospheric refraction effects
rather than in the flaws of the observation system due to focusing problems, so that we will
assume the system is ideal in the sense that all rays from a particular marking on the light-
house converge to a single point on the focal plane after passing through the 2D lens.8 With
this system the lens simply converts the angle γ0 subtended by the ray passing through the
centre of the lens into a corresponding image height H ′ in the focal plane given by tan γ0 =
H ′
f
, where f is the focal length of the lens; see Figure 5.9

If we equate the incoming or entry angle at the lens to the source launch angle as defined
in our earlier work, then all our previous results for ray paths carry across immediately to this
situation with the lens being located at (0,1), and with z(1, γ0) now representing the scaled
height of the viewed object above the Earth.

Now under uniform refractive-index conditions the ray entering the lens at angle γ0 arrives
from the location in the object plane z= z0(1, γ0) given by

z0(1, γ0)=1+κ/2+γ0; (19)

see (16) with a1 =0, and Figure 6. The axis of the lens given by γ0 =0 provides an appropriate
datum for vertical location in the object plane so that there is an apparent vertical displace-
ment in the object plane given by z0(1,0)−1=κ/2, due to the Earth’s curvature.10 Also note
that the resulting scaled magnification is given by dz0(1,γ0)

dγ0
= 1, so that equally spaced mark-

ings on the lighthouse will be seen as equally spaced markings in the image plane; see Figure
7. The received image will be uniformly magnified.

8We also ignore 3D effects. Note also that the range here is large.
9Thus H ′ = (f/L)H under constant refractive index, flat Earth (κ= 0) conditions, where L is the dis-
tance of the lighthouse from the lens; a uniformly magnified image is received.
10Recall that z=1 is the location of the lens.
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Figure 7. Optical distortion: the figure depicts rays propagating from equally spaced markings on a lighthouse to
the observation lens.

In our variable refractive-index-medium case the ray entering the lens at angle γ0 arrives
from the location in the object plane given by z(1, γ0), so that there is an additional appar-
ent vertical displacement11 in the object plane due to refractivity effects given by z(1, γ0)−
z0(1,0), where we have chosen γ0 =0 as a datum. By writing this in the form

z(1, γ0)− z0(1,0)=D(n)+M(n, γ0)γ0,

we can identify the offset or apparent displacement D and the local magnification M due to
refraction. In general, we would expect the magnification M to vary with the entry angle γ0,
resulting in a non-uniformly magnified or distorted image, but for the quadratic case using
(17) we get

M(a2)=
sin

(√−2ηa2

)
√−2ηa2

, D(a1, a2)= ηa1 +κ
2ηa2

[
cos

√
−2ηa2 −1

]
− κ

2

in the a2<0 case, and

M(a2)=
sinh

(√
2ηa2

)
√

2ηa2
, D(a1, a2)= ηa1 +κ

2ηa2

[
cosh

√
2ηa2 −1

]
− κ

2

in the a2>0 case. Note that in the limit as a2 →0, D → ηa1
2 and M→1.

Thus the image generated by rays propagating through a quadratic index profile is uniformly
magnified. For higher-order profiles distortion occurs. Now we all know that images are true
in a constant refractive-index flat-Earth situation,12 and many would be aware of the some-
what surprising result that images are also true in the linear refractive-index profile flat-Earth
situation, where rays are parabolic. Remarkably, however, this is also the case for quadratic
refractive-index situations over a spherical Earth! Observing the converging and diverging
behaviour of propagating rays (see Figures 2 and 3) this would seem to be unlikely.

The magnification and displacement results are plotted in Figure 8. Note that the mag-
nification is dependent only on a2, and is unity if a2 = 0, that is, for linear refractivity pro-
files. For fixed a2 the displacement varies linearly with a1. Note also that the displacement is

11Added on to the apparent displacement due to the Earth’s curvature.
12Where the rays are straight lines.
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Figure 8. Left: The variation of image magnification M with a2. Right: The variation of displacement D with a1

for −1·5<a2<1·5 (κ=1, η=1).

equal to −κ/2 when a1 =−κ/η for all values of a2. This situation is the one in which Earth-
curvature effects and refractivity effects just balance. Using these results, it is a trivial mat-
ter to determine the refractivity coefficients a1, a2 for any quadratic profile using observations
of the magnification and displacement. One simply first uses the observed magnification to
determine a2. The appropriate displacement curve can then be used to determine a1 from off-
set observations. It should be noted that in the a2< 0 oscillatory-path case there are several
choices for a2 that give identical magnification, so some care is required. Of course, having
determined (a1, a2) it is a trivial matter to determine a true image.

At least for quadratic profiles the inverse problem is solved and ray-path computations are
not even required to invert an image.

3.1. Inversion of general profiles

For refractive-index profiles more complex than a simple quadratic, the received image will be
distorted. It should be noted, however, that rays received from the object plane that remain
within one of the quadratic layers will generate an undistorted image whose displacement and
magnification can be used to determine the index coefficients

(
a
(i)

1 , a
(i)

2

)
for that layer. We will

refer to rays that separate out significant regions in the propagation region as critical rays,
and will also refer to the associated entry angles as being critical. Rays with turning points
located on the Earth’s surface, or on other significant profile-change interfaces, are thus criti-
cal. Observations of critical rays can be used to determine the locations of edges of the layers.
No attempt will be made here to detail the inversion process in the general patched quadratic
case but, in principle, the procedure is straightforward. In practice the location of the obser-
vation system can strongly affect the outcome.

We will illustrate the procedure by referring back to the example shown in Figure 4. Rays
propagating entirely within the convex refractive-index layer (0·5<z<1·5) produce a constant
magnification image in the image plane; observations can be used to determine

(
a
(2)
1 , a

(2)
2

)
.

The critical rays bounding this propagation zone have turning points located on the edges
of layer 2, so that observations of the critical angles, when used in association with the
turning-point result (11), will determine the boundaries of layer 2 (in this case z= 0·5 and
z= 1·5). Rays entering the lens at angles outside the above range arrive from regions of the
object plane that are remote from those that are trapped within the convex zone, so that
the image will contain discontinuities corresponding to the above critical angles. Furthermore,
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the received images associated with these rays will be distorted because they pass through
more than one layer. Whilst it is a straightforward matter in theory to trace the path of a
ray through two or more layers, and thus determine the resulting local image magnification,
such a procedure is unlikely to be useful in practice for image inversion. To determine the
refractive-index parameters corresponding to layers 1 and 3 one would need to receive use-
ful (relatively undistorted) magnification information from the object plane and this is best
achieved by relocating the observation system.

In general, singularities (or catastrophies) in the propagation domain correspond to
refractive-index-profile transitions or are associated with domain boundaries. A classification
of the singularities of the map (13, 14) from (n(z), γ0) to z(1, γ0), with n(z) piecewise qua-
dratic, would be valuable. The parameter γ0 is a bifurcation parameter for the problem. This
study is under way.

4. Boundary-layer effects: the inferior mirage

Very high temperatures close to a road surface cause refractive-index decreases that can result
in mirages. Typically, the refractive-index profile decreases exponentially within a boundary
layer of thickness 0·5–2 m. A suitable model for refractive-index variations inside the bound-
ary layer, and for moderate distances above the road surface is given by

n(z)=n(1)+a1(z−1)− δn e− z
ε , (20)

where n(1)−a1 is the refractive index at the road surface if local surface effects are ignored,
and δn is the change in refractivity across the boundary layer of thickness ε, which we assume
to be small.13 We will assume δn> 0; in this case rays entering the boundary layer will be
deflected away from the surface of the Earth, so that mirages are possible. The ray-path inte-
gral (8) cannot be exactly evaluated for this linear/exponential profile; however, in the con-
stant/exponential case the integral can be exactly determined and, by utilizing the smallness
of ε, we can use asymptotic matching to facilitate the analysis of the problem.

As with the earlier work an accurate determination of ray paths is required to invert an
image. We already have an accurate description of the path of rays that do not enter the
boundary layer, so that a determination of the path of rays that enter the boundary layer and
then later emerge is required; see Figure 9. These rays are effectively reflected by the bound-
ary layer. Such rays have a turning point within the boundary layer which we will denote by
(xt , zt ). With n(z) as above, see (20), the angular displacement14 away from the horizontal of
a ray at any location z when launched at angle γ0 is given by

γ (z)=−
√
γ 2

0 +2(z−1)(ηa1 +κ)−2η δn e−z/ε, for x <xt , (21)

see (9, 20), so that the rays of interest are those with launch angles γ0(zt ), obtained by solving

γ 2
0 +2(zt −1)(ηa1 +κ)−2η δne−zt /ε =0 (22)

for γ0(zt ), where zt spans the boundary layer. The range of associated launch angles is of unit
order because the change of refractivity is of unit order across the boundary layer. We will
denote the launch angle associated with the turning point (xt , zt ) by γ0t , so γ0t ≡γ0(zt ). The

13So that the thickness of the boundary layer is much smaller than the viewing height H .
14really the tangent of the angular displacement, but to first order these are equal.
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Figure 9. A ray entering the boundary layer, turning
at (xt , zt ), and emerging.

Figure 10. Rays propagating through an exponential
boundary layer from an object plane at x = 4 to a
lens at (0,1). (η = −1, ε = 0·1, κ = 0, a1 = 0 with γ =
−1·2,−1,−0·8,−0·6,−0·4,−0·2,−0·1).

ray that has a turning point located on the surface of the Earth is a critical ray. The launch
angle corresponding to this critical ray is given by

γ0crit =−
√

2(ηa1 +κ)+2η δn. (23)

Rays with initial launch angles γ0 less than the critical angle will strike the Earth and will be
absorbed.

4.1. The outer solution description

To first order in ε the path description of the rays of interest in the outer region15 is given
by ignoring the exponentially small term in the expression for n(z), so that we recover the
linear-profile result

x(γ0t )= 1
ηa1 +κ

(√
γ 2

0t +2(ηa1 +κ)(z−1)−γ0t

)
(24)

for the rays; see (16). If such rays were not deflected within the boundary layer, they would
hit the boundary z=0 at the location xin(zt ) given by

xin = 1
ηa1 +κ

(√
γ 2

0t −2(ηa1 +κ)−γ0t

)
, (25)

and at an angle γin(zt ) given by

γin =−
√
γ 2

0t −2(ηa1 +κ), (26)

see (21), so that to first order in ε just outside the boundary layer, the ray paths of interest
are given by

x−xin = 1
γin
z+O(ε2), (27)

with (xin(zt ), γin(zt )) as defined above identifying specific rays. This result will be used
later for matching. This completes the description of the reflected rays in the outer region.
Higher-order terms can be obtained but are not required here.

15That is the region outside the boundary layer.
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4.2. The ray description within the boundary layer

In the boundary layer or inner region we wish to determine the ray-path description that
matches onto the above outer ray description for each of the reflected rays. The ray path
through the turning point (xt , zt ) is given by

x−xt =
∫ zt

z

1/γ (u)du for x <xt ,

see (8), after adjusting the integration constant so that at (xt , zt ) lies on the path. The actual
value for xt will be determined later. To obtain an inner approximation we re-scale the vari-
ables (u= εv, z= εζ, zt = εζt ) to give

x−xt = ε
∫ ζt

ζ

dv√
(γin)

2 −2ηδne−v + ε2(ηa1 +κ)v
,

see (21), where for convenience we have replaced γ0t by γin, using (26). To first order in ε the
linear term in v in the integrand can be neglected, giving

x−xt = ε

γin

∫ ζt

ζ

dv√
1− ξe−v +O(ε2), where ξ = 2η (δn)

(γin)
2
, (28)

and the integral evaluated to give

x−xt =− 2ε
γin

(
arctanh

√
1− ξe−ζ −arctanh

√
1− ξe−ζt

)
, (29)

to order ε2.
Note that ξ =1 corresponds to the critical ray.

4.3. Matching

For large ζ

arctanh
√

1− ξe−ζ ∼ ζ

2
+ log

2√
ξ
, (30)

so that on the outer edge of the boundary layer the inner solution for the ray path (29) is
given by

x−xt = z

γin
+ 2ε
γin

(
− log 2√

ξ
+arctanh

(√
1− ξe−ζt

))
+O(ε2), (31)

after converting back to the unstretched variable z. The choice of xt given by

xt =xin(γ0t )+ 2ε
γin

(
− log 2√

ξ
+arctanh

(√
1− ξe−zt/ε

))
+O(ε2), (32)

ensures this description matches onto the description of the rays just outside the boundary
layer (27) to order ε2. Note especially that the angular displacements match. Recall that xin =
xin(zt ) and γin = γin(zt ) as given by (25, 26) identify specific reflected rays. The matching is
now complete to first order in ε. The path of the ray which turns at a height zt above the
Earth is given by (24) outside the boundary layer, and (29, 32) within the boundary layer.
This solution is valid for x < xt . Ray paths are symmetric about x = xt so the solutions for
x >xt are mirror images of the above solutions.
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Interesting features that can be extracted from the above results are; see Figure 10:
– Rays entering the boundary layer at an angle γin emerge at an angle −γin so that they are

effectively reflected. The rays are, however, displaced sideways by an amount (of order ε)
that depends on the shallowness of the entry; see (32).

– Rays that skim the outside of the boundary layer remain within the layer longer than those
that penetrate further; see (32). This means that the reflected image is inverted.

– From a quantitative viewpoint the most important ray is the critical ray. By observing
the launch angle γ0crit associated with this ray one can determine the change in refractive
index across the boundary δn; see (23).

– The reflected rays form an envelope (or caustic), the location of which can be used to
determine the boundary-layer thickness ε; see Figure 9.

– The mirage is essentially undistorted (except for inversion), except close to the caustic.
Ray-theory predictions are incorrect close to the caustic; an infinite wave amplitude is

predicted due to the convergence of the rays. The correct behaviour was first investigated by
Airy and, more recently, asymptotic results were obtained by Kay and Keller [20]; see also
[21, pp. 375–380]. The correct result is that the amplitude remains finite but large close to the
caustic as predicted by ray theory. In the present circumstances attenuation and 3D effects
(not accounted for in these simplified models) are likely to determine the structure of the
caustic; however, such effects are purely local16 and so are not of interest for the image inver-
sion work of interest here.

We will briefly describe the image generated under mirage circumstances in the simple flat-
Earth (κ = 0) constant refractivity/exponential case shown in Figure 10. For this simple case
rays travel in straight lines outside the boundary layer. In the situation depicted, rays received
from the object plane located at x = 4 pass through a lens at x = 0, z= 1 and are focused
behind the lens. The received image consists of:

– An undistorted image of the object plane above the critical ray, generated by rays passing
directly from the object plane to the lens,

– superimposed images of the object plane between the critical ray and the caustic produced
by direct and reflected rays, and

– a zone below the caustic which is not imaged.

Except close to the caustic the received images are uniformly magnified with M=1.

5. Conclusions

The centerpiece of this work is contained in the result (8) which represents an asymptotic
description of the path of a ray propagating over the Earth in a steady radially varying
index profile. We have seen that the usefulness of this result arises because the description is
extremely accurate and because it leads to explicit ray-path solutions for a very broad range
of index profiles over a spherical Earth; see Equations (13, 14, 24, 27). This is a significant
advance on earlier results in that such paths needed to be obtained by numerical integra-
tion and the resultant errors hampered image-inversion work. As an added bonus the image
received through a quadratic index profile was shown to be uniformly magnified, so that sim-
ple offset and magnification observations, together with critical ray observations, can be used
to determine the index profile, at least for profiles of the above type. Using these results, it
is a simple matter to answer the original question posed: “where is the ship and what is its
shape?”, at least for steady radial profiles likely to be of practical interest.

16Ray theory correctly positions the caustic.
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Using the above results, it should also be possible to explain better, and even quantify,
a number of interesting observed phenomena due to refraction in the atmosphere, such as
described for example in [22, Chapter 5]. One such phenomenon is that of looming, which
describes the apparent enhanced magnification of certain objects seen on the horizon. For
example in [25] there is a description and photograph of individuals walking across a sand-
spit who appear to be much closer to an observer than objects known to be nearer. Given
the convergence and divergence of rays seen in Figure 3 due to a simple quadratic index pro-
file variation, this is not unexpected; however, it would appear that looming is due to the fact
that the apparent position of an object is not located in the same vertical plane of the object
(as implied in our earlier work), and more importantly can vary in location for objects at
different distances from the observer and for different heights above the Earth; distances are
thus misjudged. This occurs especially under mirage-forming conditions. A general description
of this phenomenon can be found in [23, Part IV, Chapter 2]. Sodha et al. [24] have quan-
tified the phenomenon for exponential profiles. Their work needs to be extended using the
results obtained above. Curiosity demands that all such spectacular phenomena be quantita-
tively explained. An excellent description of a range of such phenomena, including looming
with accompanying images, can also be found in [25].

Whilst refractive-index variations are likely to be most rapid in a direction normal to
the Earth’s surface, there are obvious situations in which rapid variations are likely to occur
around the surface of the Earth. For example rapid changes are likely to occur where land
and sea meet and, of course, marine observations are often made from the land. If the length
scale of such transitions is much smaller than the horizon distance (about 20 km), then a
useful description may be obtained using the above results. If this is not the case, then the
approximations underlying the above work are no longer valid; accurate exact results are
unlikely in such cases.

Perhaps the most promising and exciting extension to the above analysis lies in the area of
scintillation. Turbulent fluctuations cause the ray paths to fluctuate, so that the image associ-
ated with a particular point object will move on the image plane, giving rise to “shimmer”,
“dancing” or “wandering”. Fluctuations in intensity also occur. Whilst the variations are rela-
tively small, the effect on the received image can be dramatic, and in fact the received image
often can be unrecognizable. The twinkling star is, of course, the best known example. The
effect would be minor if all image points moved in unison but this does not occur. It is a
major task to unscramble such images. Given the results for ray paths displayed in Figures 2
and 3, one would expect variations in the average refractive index in the radial direction to
strongly effect the received image; such effects have not yet been accounted for and can now
be addressed using the above results. The turbulent fluctuations of interest occur over a time
scale much larger than the time for a ray to pass from the object to the observation system,
so that multi-scaling or averaging techniques are likely to lead to a usefully simple description
for the fluctuating ray paths taking into account radial variations in the index mean. Using
such an approach it should be possible to accurately filter the received image upon which a
sensible attempt can be made to invert the image. This work in under way.
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